of a planet with a major axis equivalent to Mercury's modulus, and eccentricity equivalent to the mean of the eccentricities of the other interior planets, Mercury and Mars may have condensed simultaneonsly from an intra-asteroidal ring, of a thickness corresponding to the difference between their rotation-moduli. [4 would then indicate the primary nucleus of the first intra-asteroidal nebulous ring, or the mean distance of Jars ; \sim^{3}. the perihelion of Mars ; $\triangle^{2}, \Delta^{1}, \wedge^{0}$, the moduli of rotation of Mars, Venus, and Earth.

PLANETARY RELATIONS TO THE SLN-SPOT PERIOD.

By Pliny Eirle Chase.

(Read before the American Philosophical Society, March ith, 18i3.)
Stockwell's discussion of Secular Variations has furnished an mexpected confirmation of my suggested accordance between Jupiter's mean perihelion distance, the planetary centre of gyration, and the radius vector of the disturbing force which occasions the mean sum-spot cycle cf. $11.07 \pm$ years.

In my previous paper (ente, xii, 410) I made the comparisons with the present eccentricity of Jupiter. If we take the mean eccentricity (.04316), Jupiter's mean perihelion is in the precise orbit of the disturbing force. provided the disturbance-period is 11.11 years. The factor of Jupiter's variation from Borle's Law $\left[(1.079)^{\frac{1}{3}}\right]$ is also the factor of the perturbation variation from the centre of planetary gyration $5.101 \div 1.0257=$ $4973)$.

Kirkwool has shown the approximate commensurability of the Wolfian cycle with 46 years of Mercury, 18 years of Vems, 11 of Earth, (5 of Mars, and 1 of Jupiter. I have introduced these five periods in the following table, together with (6) 3^{3} of Saturn, (i) $\frac{2^{2}}{15}$ of Cramus ; (8) $\frac{1}{15}$ of Neptune; $(9) \frac{2}{3}$ year of the mean centre of inertia of Jupiter's aphelion and Saturn's perihelion ; (10) $\frac{2}{3}$ do. Jupiter's perihelion and the aphelion of Cranus ; (11) $\%$ clo. Saturn's aphelion and Cranus' perihelion ; (12. $\frac{1}{5}$ do. Satum's perihelion and Neptune's aphelion ; (13) $\frac{1}{12}$ do. Cranus aphelion and Neptune's perihelion.

Approxhmitions to the Wolfian Cycle.

[^0]

If we substitute $\frac{1}{1} \frac{1}{5}$ of Jupiter's year (4043.74) for the fifth number in the above table, the mean will become 4049.85, the time of planetary revolntion at Jupiter's mean perihelion being 4057.65 days. The fractional coefficients of the exterior planetary years will also be nearly commensurable, ${ }^{2} \times \frac{14}{15}$ being nearly equivalent to $5 \times{ }_{8}^{3}, 14 \times{ }_{15}^{2}$, and $28 \times \frac{1}{15}$.

The relations of Uranus to the centre of oscillation of Neptume's rarlins vector and to the synchronous vibrations of light and gravity, lend interest to the following table. The elements introduced are the mean aphelia of the three outer planets, the mean perihelion of Jupiter, and the mean distances of the imner planets.

Appromimate Commensurability of Planetari Distances.	
$\frac{2}{3}$ Neptune's mean aphelion.	20.226
Uranus' " "	20.043
$2 \times$ Saturn's " "	20.
$4 \times$ Jupiter's mean perihelion.	19.913
$13 \times$ Mars.	19.808
20 Earth	20.
$28 \times$ Venus	20.253
$52 \times$ Mercury	30.129
Average.	20.046

The almost precise accordance of the general mean with the aphelion of Urams, the diminution of values towards the centre, and the grouping by pairs, are all indicative of harmonic laws which may serve not only to explain the sun-spot cycles, but also many of the other phenomena of our system.

RELATIVE VELOCITIES OF LIGHT AND GRAVITY.

By Pliny Earle Chase.

(Read before the American Philosoplical Society, March 7th, 1873.)

The only approximate estimate of the velocity of gravity that has ever been made, appears to be that of La Place, who showed that it must be at least six million times as great as that of light. The mutual action and reaction of centrifugal and centripetal forces may, perhaps, furuish means for its ultimate satisfactory determination, to which end the following considerations may be regarded as preliminary.

[^0]: * Earth's radius vector, divided by $3 / 3=$ Mercurs's modulus of rotation.

